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SUMMARY 

In order to simulate geophysical general circulation processes, to simplify the governing equations of motion, 
often the vertical momentum equation of the Navier-Stokes equations is replaced by the hydrostatic approximation 
equation. The resulting equations are reformulated and a variational formulation of the linearized problem is 
derived. Iteration schemes are presented to solve this problem. A finite element method is discussed, as well as a 
finite difference method which is based on a grid that is often used in geophysical general circulation models. The 
schemes are extended to the non-linear case. Numerical examples are presented to demonstrate the performance of 
the derived iteration schemes. 
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1. INTRODUCTION 

In order to simulate geophysical general circulation processes, to simplify the governing equations of 
motion, often the vertical momentum equation of the Navier-Stokes equations is replaced by the 
hydrostatic approximation equation. By applying the hydrostatic approximation, the prognostic feature 
and the highest-order spatial derivatives of the vertical velocity component are eliminated from the 
vertical momentum equation, which, among other things, must result in an adjustument of the 
boundary conditions for this velocity component. From a practical point of view the hydrostatic 
approximatioin is necessary when the aspect ratio, i.e. the ratio between a characteristic depth scale and 
a horizontal length scale of the domain, is small; without it, a strongly anisotropic elliptic operator 
would remain in the formulation and the assosicated discrete problem would be too ill-conditioned to 
apply iterative methods to find a solution. 

In view of the necessity to solve three-dimensional general circulation problems in oceans or large 
lakes, fast algorithms are needed that can provide solutions on high-resolution grids. The history and 
methodology of modelling the circulation of the world ocean has been reviewed by Semtner. A variety 
of finite difference methods have been developed to solve the primitive equations for the ocean. There 
are two approaches that are frequently used. The first one is based on the derivation of a prognostic 
volume transport streamfunction of the vertically integrated flow at each time step by eliminating the 
surface pressure from the horizontal momentum eq~ations.2'~ The second approach is based on a 
conversion of the original set of equations into one in which the surface pressure is more directly 
expressed in terms of the so-called pressure Poisson equation.4 A disadvantage of both approaches is 
that in each case boundary value problems have to be solved at every time step, for which in practice 
no exact boundary conditions are at hand. For the original problem, initial conditions and boundary 
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Figure 1. A 3D domain Q with boundary aR = ZlJ6’ZUr,Urb. The function h: 2 -+ R specifies the form of the bottom rb. A 
left-handed Cartesian system is used with the x,-axis pointing downwards 

conditions are provided only for the velocity components, so that boundary conditions for other 
physical quantities must be derived from these and the actual status of the flow field. 

A numerical procedure is presented whereby the governing equations of motion for the ocean can be 
solved. No boundary conditions for physical quantities other than the velocity components are 
introduced. The hydrostatic approximation is fundamental to the presented approach. Further, the 
Boussinesq approximation, i.e. density variations are only accounted for in the buoyancy term and in 
the equation of state, and the rigid lid approximation, i.e. the surface of the domain is covered by a 
rigid lid eliminating free surface waves, are used as well.778 For convenience the formulation is given 
with respect to a Euclidean frame of reference and the Coriolis acceleration is accounted for by using 
the fi-appro~imation.~ First the continuity equations are reformulated. The reformulation is essentially 
the same as that presented by Lions et aL9 Then the numerical procedure is discussed. It is based on a 
variational formulation of the reformulated governing linearized continuity equations. This weak 
formulation can be solved by applying well-known techniques. Two types of spatial discretization are 
discussed: a finite element method and a finite difference method which is based on a grid that is often 
used in geophysical fluid problems. For the linearized equations the convergence of the derived 
iteration schemes is proven. The application of the schemes is extended to the non-linear problem. 
Numerical examples are presented to demonstrate the performance of the procedure. 

2. THE CONTINUITY EQUATIONS 

Throughout this paper a left-handed Cartesian frame of reference will be used in which the x1 and the 
x2-axis are directed horizontally and the x3-axis is pointing downwards. A bounded domain R is 
defined in R3. The domain R is an open set in R3 and its boundary consists of a horizontal surface I:, a 
lateral boundary rL and a bottom rb. The surface I: is a regular bounded open subset in R2 of class C’ , 
say in the xlx2-plane at x3 = 0. The bottom rb is defined by the function h E C’(5) (piecewise), which 
specifies the depth of the basin at each point in 2. It is assumed that 0 < h 5 h,, for all points in 2. I: 
is connected with rb by a lateral boundary rL (see Figure 1). It is remarked that what follows in the 
rest of the paper essentially applies to more general domains, but that for convenience and in view of 
the field of application a domain with a flat horizontal surface is used. 

We are interested in motions on a geophysical scale and the effect of the use of a non-inertial frame 
of reference which is attached to the rotating earth is included by the /%approximation of the Coriolis 
acceleration: with Coriolis factor X E  C?(fi). The Boussinesq approximation and the rigid lid 
approximation are used as well.* Turbulent viscosity in the horizontal and vertical directions is 
represented by constant turbulent viscosity coefficients AH and Av respectively, i.e. by Reynolds 
stresses. 

Large-scale geophysical motion occurs within a thin sheet of fluid and this gives a disparity between 
horizontal and vertical scales. The influence of this disparity becomes evident by writing the governing 



THE HYDROSTATIC APPROXIMATION NAVIER-STOKES EQUATIONS 55 1 

equations in a non-dimensional form. Therefore let L be a characteristic horizontal length, D be a 
vertical one and U be a characteristic scale for the horizontal velocity. The aspect ratio is defined by 
6 = D/L and it may be assumed throughout that 6 << 1. Further, let ui be the velocity component in the 
i-direction (i = 1, 2, 3). With the mass conservation equation and the Boussinesq approximation we 
have 

"I "2 "3 -+-+--0, 
axl ax2 ax3 

and it follows immediately that we must have u3 = O(6U). The non-dimensional Rossby number and 
the horizontal and vertical Ekman numbers are defined respectively as 

where may be taken as the maximum Coriolis factor in absolute value in SZ, i.e. the factor at 
maximum/minimum latitude. There is much uncertainty associated with the values of the turbulent 
viscosity coefficients AH and Av and estimates in the ocean or large lakes vary enormously. It is not 
unreasonable, however, to assume that the turbulent viscosity is to some extent proportional to the 
square of the associated length scale. At least this would mean that EH and E v  have the same order of 
magnitude. Merely for convenience in order to keep the expressions that follow simple, we will take 
EH = Ev = 2 p .  With the above definitions the Navier-Stokes equations in non-dimensional form are 
written as7 

au, "I) (ah a 2 U l  a 2 q )  ap 
r -+u1-+u2-++3- - x u 2 - p  -+-+-- =--++fi, ( at ax, ax2 ax, @ a+ a$ ax1 

ap 
" l )  - ax3 

"3 "3 "3 h3)- 2 (;; a2u3 ( at axl ax2 ax3 a+ a$ b p  -+-+- ---++f3, 6 r -+u1-+u2-+u3-  

where u l ,  u2, u3 and P denote the non-dimensional velocity components and pressure respectively. 
Body force componentsfi,f2 andf3 have been added which will be specified later on. With the above 
definitions, for the non-dimensional Coriolis factor x E C?(fi) we have I[ x 11 5 1. The magnitude of 
the Rossby number r gives the relative importance between the inertial forces and the Coriolis 
acceleration, while the magnitude of the Ekman number p represents the relative importance between 
the turbulent viscous forces and the Coriolis acceleration. For general circulation problems in the 
ocean, typical orders of magnitude for these numbers at mid-latitude are r = O( lo-') and p = O( 1 OP2). 
A typical order of magnitude for the aspect ratio is 6 = O(10-3). The hydrostatic approximation is 
obtained by taking 6 = 0 in (3). 

With r = 0, 2 = 0 and 6 = 1 in (3) we find the classical Stokes equations. Subject to appropriate 
boundary conditions, there exists a variety of iteration methods to solve the Stokes problem. An 
optimization method such as the Uzawa method, whose application will be discussed later on, is in 
principle suitable for solving a discrete form of the above equations with 6 > 0. However, the 
number of iterations to obtain an approximate solution with a prescribed precision will increase if 6 
is taken smaller and will tend to infinity if 6 + 0. This behaviour can easily be verified in practice. 
We will not give a formal proof of the statement, but it will be made plausible. The elliptic operator 
which is acting on the velocity field (ul ,  u2, u3) is anisotropic owing to the factor d2. When this 
operator is discretized to find a numerical solution, the eigenvalue spectrum of the resulting matrix 
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depends on the factors p and b2p. When 6 is taken smaller, basically the spectrum will be enlarged 
towards zero, and when 6 + 0, the operator will tend to become singular. The enlargement of the 
spectrum will increase the number of iterations and the method will break down if the matrix 
becomes singular. 

This remark suggests that the equations in their present form are not an appropriate starting point to 
derive iteration schemes that can be applied to find solutions when the hydrostatic approximation is 
used. In order to overcome this problem, we shall first given an alternative form of (3) by taking the 
kinematic condition into account, i.e. that there is no normal flow through the surface Z and the bottom 
rb. By imposing this condition, an equivalence can be used that is readily established with Leibniz' 
integration rule: 

where n = ( n l ,  nz, n3) is the outward-pointing normal vector on Z and rb. This means that the 
kinematic condition and the condition that the velocity field must be divergence-free in R can be 
replaced by a condition that relates only to the horizontal components, namely that vertically integrated 
horizontal velocity components are divergence-free in the plane Z, and by a relation that explicitly 
determines the vertical velocity component. Further, to avoid the anisotropy in the elliptic operator, the 
hydrostatic approximation is used by setting 6 = 0 in (3). Then the pressure P can be decomposed into 
a non-hydrostatic pressure part P, which is independent of the vertical co-ordinate and a hydrostatic 
Part as 

. ap, 
ax3 

P = Ps + j-) dz, Wlth - = 0. 

The non-hydrostatic pressure P, is a consequence of the rigid lid approximation, but physically it can 
be interpreted as a surface elevation of the water column. By assuming sufficient regularity of the body 
force componenth, the problem can be reformulated in terms of the pressure P, by entering the given 
hydrostatic part into the horizontal body force components fi and fi in (3). For the moment, 
homogeneous Dirichlet boundary conditions are specified for the horizontal velocity components, i.e. 
we set u1= u2 = 0 on X l .  We arrive at an equivalent formulation of (1) and (3) with 6 = 0. Writing 
henceforth P for P,, it takes the form 

u3 = - divx(u) dz, l 
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where 

u = ( M I ,  u2)T : R x (0, T )  + R', P : R x (0, T )  +. R, f = (fi,f2)T : n x (0, T )  + R2, 

with x~C?(6) the Coriolis factor. The above system will be referred to as the hydrostatic 
approximation (hydapp) Navier-Stokes problem. When r=O, we will speak of the hydapp Stokes 
problem (with Coriolis term). Notice that in this case the vertical velocity component has 
disappeared from the first equation of (6) and we are left with the problem of finding the horizontal 
velocity u E @'(a) and the pressure P E C'(6). Once the horizontal velocity has been found, the 
vertical velocity component can be found explicitly. The boundary conditions for this component are 
indirectly imposed by the kinematic condition through (4). This means in particular that, in contrast 
with the full Navier-Stokes problem without the hydrostatic approximation, no boundary condition 
is specified on vertical sides rL for this velocity component. 

The above reformulation is essentially the same as that presented by Lions et aL9 For a theoretical 
treatment of these and related non-linear systems of equations we refer to their work. In the rest of the 
paper we wish to arrive at fast applicable iteraction schemes to solve a discrete form of system (6). In 
order to do so, appropriate numerical schemes will be derived by analysing the linearized system of 
equations and extending the results to the non-linear case. 

3. THE HYDAPP STOKES PROBLEM 

3. I .  A variational formulation of the hydapp Stokes problem 

Let D(R) and D(Z) denote the spaces of C"(R)- and CmO;)-functions with compact support 
contained in the bounded open sets R in R3 and Z in R2, respectively. Let L2(R) and Lz(Z) be the 
Hilbert spaces of real functions on i2 and X respectively, which are square integrable in the 
Lebesgue sense and on which the usual scalar products are defined with associated norms: 

(4, +)Lqn) = J, ++ m9 ll4IILt(,)= (4* 4)2!&. 

Further, two Sobolev spaces of order one are denoted by 
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where y is the trace operator; they have respective Hilbert structures given by 

We shall often be concerned with two-dimensional vector functions with components in one of these 
spaces. We shall use the notation L2(Q) = { J ~ ~ ( R ) } ~ ,  L2(Z) = {L*(C)}’, W@) = {H&l)}* and 
WA(2) = {HA(Z)}’ and it is assumed that these product spaces are equipped with the usual product 
norms. To relate the spaces WA(C) and W@), the following result is derived. 

Proposition 1 

Let h E C1(%), with h > 0 in 2, define the depth of domain R with surface C as described in 
Section 2. Then 

u + u =  u d z  
- def l 

defines a mapping from W$R) onto W,@) for which 
2 2 lli41H;(E)5 hnax llull HA(*), 

where h,, is the maximum depth of R. 

Prooj For u E CA(Q), by using the Cauchy-Schwartz inequality and Fubini’s theorem, the result 
readily follows. Since C@) is a dense subspace of W@) with continuous injection, the inequality 
can be extended to all elements of W@). Further, for every q E W@) there exists a 4 E MI@) with 
q = 4. For this purpose take any 1 E D((0, 1)) with $(z) dz = 1. Since h is a positive h c t i o n  in %, 
for given q E W@) one may verify that 

and thus & =q. 0 

Taking r = 0 in (6), multiplying the equations by a test h c t i o n  and integrating the result over R 
using Green’s theorem leads to the following variational formulation for the hydapp Stokes problem 
with Coriolis term: 

givenf E IL*(R) 
findu E Y suchthat 
a(u, v) = L(v), vv E v, 

where 

(7) 

V = {v E Wi(R)ldivx(?) = 0 a.e. in Z}. 
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Plate 1. Temperature and velocity fields ((a,b) horizontal levels, (c) vertical slice) after 12 h wind 
forcing of a SW wind with constant speed 7.5 m/s. Colours refer to temperature (see plate 2). The 
scaling factors for velocity arrows are adjusted in each plot according to the maximum velocity that 
occurs a t  that  level or slice. The magnitude of the longest arrow is denoted under the corresponding 
plot. The depthlevel is indicated by the K-value and the  slice by theJ-value (see Figure 6 ) .  The SW wind 
drags the  surface currents eastwards, inducing upwelling in the west part and downwelling in the east  

part  of the lake. The flux in the upper layers is balanced by a counter-current in the deeper ones 
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Plate 2. Temperature and velocity fields ((a,b) horizontal levels, (c) vertical slice) 12 h after the wind 
was turned off. In the vertical slice one may notice the subdivision into two oppositely rotating cells, 

epilimnetic and hypolimnetic 
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In deriving (7), we used 

-gradz(P). v dQ = - p divx(i) dE = 0, Vv E V ,  J* 
where nZ is the outward-pointing normal vector on ax and p=p(x,  y )  is the surface pressure 
defined on Z. Further, notice that divzo is Lipschitz-continuous, because with Proposition 1 it 
follows that 

I1 divz(i4 I1 L z ( q 5  I1 i l l  W@) 5 %I1 41 Hi(*) 1 

with % = Jh- the Lipschitz constant. 
When the horizontal velocity is known, for the vertical velocity we get the following: 

given u E V ,  

find u3 E Z such that 
(9) 

where 

aw 
2 = w E L*(Q) - E LZ(Q), yw - 0 . { L3 Iz- 1 

The space Vis separable as a closed subspace of W;(Q). Further, u(.,.) is a bilinear continuous form 
which is coercive, with coercive constant p > 0, and from the classical projection theorem it follows 
that (7) has a unique solution. It will be shown how this solution relates to a solution of problem (6) 
with r = 0. First we prove the following proposition. 

Proposition 2 

X. Then one may define q E H- ' (Z )  through 
Let h E C1(%), with h =- 0 in 5, and let Q E H-'(Q), the dual space of W;(O), with aQ/ax3 = 0 a.e. in 

(Notice that the inverse statement holds trivially: for given q E H- ' (Z )  the left-hand side defines a 
functional Q E H- ' (Z )  for which aQlax, = 0 a.e. in Q.) 

Proof: From Proposition 1 we have that 4 --* 6 defines a mapping from Hk(S1) onto H@). First it is 
shown that the functional q is uniquely determined for every q E H@) for which there exists a 
d, E H$) with q = 4. By linearity it is sufficient to show that 

( q = o  =+ J n ~ + & = o ) ,  v+€H;(Q). 

Therefore let d, E D(Q) with & = 0 and define 



556 E. A. H. ZUUR 

Then $ E D@), because the support of $ is contained in that of 4, and we get 

which result may be extended to $ E HA@), since o(Q) is dense in HA@) with continuous injection. 
0 

Clearly, if u E @’(fi) is a classical solution of problem (6) with r =  0, then u satisfies the weak 
formulation (7). Inversely, when u satisfies (7), it may be shown that Xu - pAu -fcan be interpreted 
as a distribution in {D’(Q)}’, where D(Q) is the dual space of D(Q). It may be verified that for every 
# E (D(Q)}’ we have 

Second, as the mapping 4 + & is onto, q is determined for every q E HA@). 

E K so that 

a 
-(Xu - pAu -f) = 0 in (D’(Q))’. (10) 
h 3  

On account of Proposition 2, Xu - pAu -fdefines a functional on HI@) that will be denoted by 
a(Xu - pAu -f) and for which 

a(Xu - pAu -f) . q dQ = 0, Vr] E HA@), with divc(q) = 0. I, 
A theorem of de Rham” proves that a fimctional on Hi@;) which is equal to zero on divergence-free 
vector fields can be written as the gradient of a distribution. Thus there exists a p E D(X) such that 

o(Xu - pAu -f) = -grad&) in (D’(E)}’. (1 1) 

Notice that p E L2(X), since all first derivatives of p are in K - ’ ( X )  and C is of class C’.” Here p is 
defined up to an additive constant and in the rest of the paper we will take p E L2(X)lR, where 

L’(E)/R = p E L 2 ( Z ) ,  p dE = 0 . [ 1, I 
Now define P E D(Q) through 

Then with Proposition 2 and (10)-(12) we get 

Xu - pAu = -gradz(P) +f in (o’(Q))’, 
with 

ap 
ax3 
- = O  inD’(Q). 

Because u E K we immediately have yu = 0 in W’”(aSZ). Thus a solution of (7) is also a solution in the 
distributional sense of problem (6) with r = 0. 

3.2. A dualily method to solve the hydapp Stokes problem 

In order to find a solution of the variational formulation (7) and to avoid the use of a projection 
operator on K a duality method may be used. For this purpose an optimization algorithm such as the 
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Figure 2. Subdivision of a 2D domain into finite elements for the horizontal velocity component. The surface is subdivided into 
10 p-intervals 

Uzawa method is suitable.12 The algorithm is started with an arbitrary po E L2(Z)/R. When p" is 
known, urn+' and pm+l  (m 2 0) are defined by the conditions 

U r n + ]  E w;(n), 

-pm, q ) L 2 ( x )  + a(divx(um+'), q)L2(x) = 0, V q  E L2(E), 

where a > 0 is a fixed number. The existence and uniqueness of the solution urns at each iteration 
follow from the projection theorem. If a satisfies 

where % = Jh- is the Lipschitz constant in (8), then as m -+ CL), the solution (u", p"} converges to 
the solution { u, p} of problem (7), with p defined as in (1 l), in the following sense. 

urn + u strongly in H@), 

pm + p weakly in L~(E)/R. 

The proof is similar to the proof of convergence of the Uzawa method for the Stokes problem 
(Reference 13, pp. 138-142). The principal difference lies in the different constraints 
divx((ul, 242)) = 0 and div((u1, uz, u3)) = 0 for the hydapp Stokes problem and the Stokes problem 
respectively; these constraints are subject to different Lipschitz constants and therefore give rise to 
different conditions for the iteration parameter a. Notice that for this problem the surface pressure in X 
is used as a Lagrangian multiplier, while for the Stokes problem the pressure in R should be used. The 
inclusion of the Coriolis term does not affect the convergence of the procedure. 

Writing (13) in an explicit way yields 

where p"' E L2@) is related to pm E L2(C) by (12). 
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4. THE DISCRETE HYDAPP STOKES PROBLEM 

4.1 AJinite element method 

An iteration procedure is presented that may be used to solve a discrete form of the hydapp Stokes 
problem. To fix ideas, in this subsection a discretization of R and X will be based on a finite element 
method. Let the volume $2 be divided into tetrahedra and let the surface X be covered with triangles. It 
is remarked that the subdivisions of $2 and X are in principle independent of each other, although it 
may be practical that the triangles that are used to cover X coincide with the upper sides of the 
tetrahedra on the surface of the domain R. For the basis functions +i E Hi@)  (i varies from i = 1 to the 
number of nodes in the interior of $2) we have: +i is linear in each tetrahedron; +i = 1 at the interior 
node i and bi = 0 at any other node. An internal approximation of L2(C) is provided by the basis 
functions qj E L2(X) (j varies fromj = 1 to the number of triangles in C), where qj is the characteristic 
function of thejth triangle. Figure 2 shows an analogous subdivision for a 2D domain with a 1D 
surface. Thus we seek an approximation of the solution {u, p >  of (7), with p defined as in (1 l), of the 
form 

with ui=(ul i ,  ~ 2 3 ~  E R2 and p i€  Iw. For the unknown vectors we shall use the notation 

We shall define the dlscrete form of algorithm (1 3) on account of the above discretization. Given the 
basis functions, the discrete forms of the Coriolis term and the Laplacian are obtained in the usual way 
by deriving the matrices Xh and - PAh E [w2' x Iwz from the corresponding bilineaer forms in (13). 
Notice that x h  is a skew-symmetric matrix and that - PAh is a symmetric positive definite (SPD) 
matrix. The discrete forms of the divergence operator and gradient operator are derived in a similar 
way and are denoted by D h  E @ x RZf and its adjoint &* E [w2' x @respectively. These matrices can 
easily be defined in terms of the coefficients 

vh = (2411, U12,. . . , U l f ,  2421) E R" and nh = ($1,. . . , PJ) E @. 

Then the Uzawa algorithm (13)/(15) for the discrete hydapp Stokes problem (7) takes the form 

( x h  - /&)V:'+' = DEZr +fh E [w2', 

n;:+' = n;: - mv;:+' E @. 
The procedure is started with an arbitrary nh0 E @ and convergence of the procedure may be proven 

in the same manner as for problem (13) if a satisfies (14), provided the finite element structure is 
compatible, i.e. that ker Dl = 0. Once the horizontal velocity Uh has been found from (17) and (16), the 
vertical velocity component can be derived from a discrete form of (9). 

The evaluation of the surface pressure components nT+l ( j = 1,. . . , J) at each m-iteration in (1 7) is 
explicit, because the characterisic functions qj of the surface elements are orthogonal. To carry out a 
single rn-iteration, it is necessary to solve an auxiliary coupled linear system whose matrix is 
x h  - PAh, which consists of a skew-symmetric and an SPD part. The iteration scheme that is 
described in Proposition 3 may be used to solve this system. 

Proposition 3 

Consider the problem of finding v E Rk such that 

(T + A)v = f E Rk, 
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with Y, A E IWk x Rk. T is a skew-symmetric matrix with 11 T 11 2 I 1 and A is a symmetric positive 
definite matrix. In order to solve the equation, the following iteration procedure is used. Starting with 
an arbitrary do) E Rk, we define 

where fl E R is the iteration parameter. If 0 < j? I 1, then u(") converges to u in Rk as n -+ co with an 
asymptotic rate of convergence 

where kin is the minimum eigenvalue of A. 

Prooj See Appendix. 

Scheme (19) is leap-frog with respect to the skew-symmetric term. The choice of the first iteration is 
the appropriate one for this multi-level method and avoids the tendency of the leap-frog method to 
'decouple' solutions at alternate iterations. Therefore this modification improves the convergence. 
During the procedure an auxiliary system has to be solved as well whose matrix is the SPD matrix 
1+2/?A. It is noticed that if the matrix A is the SPD part of the first equation of (17), then A may be 
decomposed into two matrix blocks of order I, each of which relates to one of the horizontal velocity 
components. The resulting SPD band matrix systems can often be dealt with by a direct method. If the 
two subsystems are still too large for a direct method, a variety of fast iteration procedures exist to 
solve SPD problems, such as the conjugate gradient method, the successive overrelaxation method or 
Chebyshev polynomial acceleration  procedure^.'^"^ 

The discretization of both R and C should result in approximations uh and ph, that have a 
comparable order of precision with respect to the solutions u and p of problem (7). Therefore it is 
sufficient to let the sides of triangles that divide the surface C have side lengths comparable with those 
of the tetrahedra that divide the volume R. In this respect it is noticed that in general a finite element 
solution for the Stokes problem is found by using an external approximation for the velocity 
components in order to compensate for the large number of degrees of freedom of the discrete 
pressure, which for the Stokes problem equals the number of elements in R. For the hydapp Stokes 
equations this is often not necessary, because here the number of degrees of freedom of the discrete 
pressure is much less, being the number of triangles in Z, so that the compatibility condition can be 
satisfied more easily. 

4.2. A jinite diflerence method 

The use of an unstructured finite element grid may be costly in terms of CPU time for three- 
dimensional general circulation problems which demand a high grid resolution. Therefore we shall 
discuss a finite hfference method that is based on the Arakawa C-grid.16 This grid is often used in 
geophysical fluid  dynamic^.^,^,^ In the C-grid the basis functions for the velocity components and 
pressure are the characteristic functions of parallelepipeds in the domain R, the so-called u-, v-, w- and 
P-cells ( i , j ,  k). They are staggered with respect to each other (Figure 3). Thus each of these basis 
functions is an element of L2(R). In our case we shall also distinguish rectangles, the so-calledp-cells 
(i ,  j )  on C, which coincide with the upper sides of the P-cells on the surface of R. The basis functions 
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Figure 3. Arakawa C-grid P-cell in 3D; uvb vuh and wc are drawn at the centers of the staggered U-, V- and Wells respectively 

in Z are the characteristic functions on the p-cells, which are elements of L2(Z). The domain fi is 
assumed to be filled with P-cells. Thus we seek approximate solutions of the form 

i j  i jk  

where U,, Vi,, Wiib Q u k  and qv denote the characteristic functions with respect to the corresponding 
cells. The finite difference operator in the i-direction ( i  = 1 , 2, 3) is defined as 

We shall define the discrete form of the Uzawa algorithm given by (13) on account of the above 
discretization. Given the basis functions, the discrete forms of the Coriolis term and Laplacian are 
obtained by deriving the matrices x h  and - PAh E R2' x Ru from the corresponding bilinear forms in 
(13) and using the finite difference operator (21). The Coriolis factor x is, like the pressure, 
approximated in terms of the P-cell basis functions. In particular, for the Coriolis term we get 

= $[xi j (u i jk  f ui - 1.j .  k) f Xi, j +  j +  1, k f ui - l . j +  1. k)] 

and one may notice that the resulting matrix xh is skew-symmetric. If we apply the discrete Uzawa 
algorithm for convenience to the two-dimensional case, i.e. with one horizontal and one vertical 
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dimension, then we obtain the system of equations 

where K(i) is the number of u-cells which are below and between the ith and the ( i  i- 1)thp-surface. The 
convergence of the procedure may be proven in the same manner as for problem (13) if a satisfies (14). 
Once the horizontal velocity uh has been found, the vertical velocity component is derived form (9). 
Here its evaluation is explicit and is expressed as 

The extension of (23) and (24) to the three-dimensional case and the inclusion of the Coriolis term 
(22) in (23) are straightforward. Then, as for scheme (17), to carry out a single m-iteration, it is 
necessary to solve an auxiliary coupled linear system whose matrix consists of a skew-symmetric and 
an SPD part. This system can be solved with algorithm (1 9). 

5 .  THE HYDAPP EVOLUTION NAVIER-STOKES PROBLEM 

A similar analysis for the hydapp evolution Navier-Stokes problem, i.e. for problem (6) with r > 0, 
is more complicated than what has been presented in Section 3 for the hydapp Stokes problem. Such 
an analysis is outside the scope of this paper, where we wish to arrive at applicable iteration schemes 
to solve a discrete form of this problem. Therefore derivations will be presented only for the 
linearized version of these equations and the results will be extended to the nonlinear case. 

We introduce the space 

y = N C l ,  c2, c3) E H,'(R) x H,'(R) x Z), 

where the space Z is defined as in (9), and we define a continuous trilinear form b on 
V x id@) x H ~ ( R )  by 

which is skew-symmetric in its last two arguments. Further, let T be a positive real number, H be a 
Hilbert space and L2(0, T; H) denote the space of L2-integrable fimctions from [0, into H, which is 
a Hilbert space with norm 



562 E. A. H. ZUUR 

The following weak formulation is considered: 
givenf E R2(0, T; L2(Q)), c E V and uo E V, 

find u E IL'(0, t ;  V )  such that 

v v  E V.  

where u(.,.) and L(.)  are defined as in (7). Although u belongs to L'(0, T; V )  the initial condition 
makes sense; its meaning is explained in Reference 13 (pp. 253-254). The existence and uniqueness of 
a solution of (26) may be proven on account of the results derived in Section 3 and by proceeding in a 
similar fashion as for the evolution Stokes problem Reference 13, pp. 247-269. 

Problem (26) suggests a weak formulation for the hydapp evolution Navier-Stokes problem which is 
based on replacing the constant advection velocity c E V in b(c, u, v)  by (u, u3) = (ul, u2, u3) E V, 
where u3 E 2 is given by (9). It is not difficult to see that on account of the kinematic condition (see (4)) 

The substitution of c by (u, u3) will be carried out when a discrete form of (26) is considered and we 
will not seek any further the exact conditions under which this substitution is justified. 

We shall consider a discrete form of (26). The time dependence of the variables will be indicated 
by a superscript n and the length of the time step by a constant trO. There exist many time 
discretization schemes that can be applied. Here we shall consider a procedure which is suggested by 
scheme (19). Let there be given an internal or external stable and convergent approximation of the 
space K say vh, with appropriate prolongation and restriction operators. vh  is assumed to be finite- 
dimensional. Together with Vh, one can define an approximation w h  of HA@). Essentially, the 
elements uh of w h  are of exactly the same type as the elements u h  of Vh, but no divergence condition 
is imposed. Then, by using scheme (19), the time integration is started with any u! E v h  and Uhn 

(n 2 1) is the solution in v h  of 

+ ( x h u o ,  v h ) ~ 2 ( ~ )  + p(2ui - u:, %)w, = cfh, vh)~2(n)~ v% E vh,  
(27) 

r (iT -(u;+' - UE-'? %)kZ(n) f bh((ui, 41, ur, %)) 

+ (XhuE, %)L~(Q) + p(ut+' 9 %)wb = cfh~ %)kz(n), vh E Vh (n 2 1). 

The computation of the elements u; of Vh is not easy. The difficulty is connected with the constraint 
'divz(ii) = 0' built into the definition of the space Vh; actually, the situation is the same as in Section 3 
for the hydapp Stokes problem. Therefore the problem is reformulated in the space wh.  Let & be the 
space of step functions on C. In a similar fashion as in Section 3, one may show that if u; is solution of 
(27), there exists a step fimCtiOn pf E X h  such that 
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The resolution of (28) can be done by applying the Uzawa algorithm. Assuming that the elements of 
time steps n and n - 1 have been computed, we must then compute the unknowns 
~ + l  E vh; andp:+' E x h .  They will be obtained as the limits of two sequences of elements 

g + l . m  wh and pn+l .m EXh, m=O,I ,  ..., 00. 

(m>O)= When p:+l,m is known, using the same notation as in (1 6) and (1 7), u:+'~'"+' and 
defined by 

where the explicit terms in (28) have been collected in & and where the SPD matrix Sh is associated 
with the bilinear form (u:+l, v&@) in (28). In the particular case of the finite difference formulation 
based on the C-grid, Sh is the identity matrix. The procedure is started with an arbitrary n:+lVo E w, 
e.g.  IT:",^ = n". When G+' has been computed, the vertical velocity 4+' is found from a discrete 
form of (9). Further, as for the hydapp Stokes problem, to carry out a single m-iteration, it is necessary 
to solve an auxiliary coupled linear system. However, in this case the system is SPD and does not 
contain a skew-symmetric part. 

The discrete trilinear form & of b defined by (25) is skew-symmetric in its last two arguments. If we 
assume for a moment that its first argument in (28) is a constant ch E v h ,  then from Proposition 3 it 
follows that 4 E Vh will converge to the stationary solution u r  E vh when the time step T > 0 is taken 
sufficiently small. Therefore, in practice, Proposition 3 provides a necessary stability criterion where 
the upper bound for the time step is given by the norm of the skew-symmetric matrix which results 
from the non-linear and the Coriolis term in (28). 

6.  SOME REMARKS 

We have discussed the application of the Uzawa method to solve the variational formulations (7) and 
(26), but there exist several other methods that can be used. A method that is closely related to the 
Uzawa method is the Arrow-Hurwicz algorithm.'* One may also use a penalty technique or the 
augmented Lagrangian technique."-'9 The Uzawa method may be considered to be the simplest of 
these methods. An advantage of the Arrow-Hwicz algorithm over the Uzawa method is that during 
the iteration procedure to boundary value problem is solved, but the viscosity term is treated explicitly 
at each iteration. With the augmented Lagrangian technique, basic methods such as Uzawa and 
Arrow-Hurwicz can be accelerated considerably. It is remarked that the use of non-constant turbulent 
viscosity coefficients or the inclusion of islands in R does not affect the overall procedure of these 
algorithms. 

Compared with the way the hydapp Stokes problem was solved with (18) and (19), to solve the 
evolution hydapp Navier-Stokes problem, the order of the algorithms has been interchanged by putting 
(19) on top of (29). Of course, the latter procedure can also be used to solve the hydapp Stokes 
problem, by interpreting the time step as an iteration parameter and neglecting the non-linear term in 
(28). In fact, in general this procedure is to be preferred, because the Uzawa algorithm (29) is applied 
to a problem without a skew-symmetric part and this gives the possibility to accelerate the convergence 
more strongly. 

An iteration procedure has been presented to solve the discrete hydapp Navier-Stokes problem with 
homogeneous Dirichlet boundary conditions. There are two other configurations of boundary 
conditions that are of particular importance in geophysical fluid problems. The first one is a Neumann 
condition at the surface C that specifies aUl/aZ and aUl/aZ, with which wind stress can be expressed. In 
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this case, instead of Vin the variational formulation (7), the space {v E H’(R) I divz(V) = 0, yv I r = 0) 
is used. It may be verified that with this Neumann condition the Lipschitz constant for the discrete 
divergence operator in (8) is the same as for the homogeneous Dirichlet problem, so that the 
convergence criterion (14) for the Uzawa algorithm is unaffected. The second type of boundary 
condition that is of interest is a non-homogeneous Dirichlet condition at the boundary part rL 
specifying lateral inflow and outflow. The specification must be such that the net flux through rL is 
zero. One may prove, in a similar way as for the Stokes problem13 and by using Proposition 1,  that this 
condition is necessary and sufficient for the existence and uniqueness of a solution. Further, the 
adapatation of one of the algorithms mentioned before for such a non-homogeneous problem is 
straightforward. 

The time integration scheme (27) was chosen to discretize (26), but other schemes can be applied, 
such as a Cranl-Nicolson scheme, from which a similar problem to (28) would result. When the 
Coriolis term is to be treated (semi-) implicitly, at every time step a hydapp Stokes problem with 
Coriolis term must be solved as described in Section 4. In the last paragraph of the previous section a 
necessary condition on the length of the time step was given. In most applications, however, the 
hydapp Navier-Stokes equations must be coupled to a heat andor salinity equation. Although the rigid 
lid boundary condition eliminates the highest-frequency surface wave components, it is mentioned that 
in the baroclinic case the high-frequency internal gravity waves will often put the severest condition on 
the length of the time step. If this is the case, it may be necessary to consider more cost-effective time 
integration schemes for the treatment of these waves. We refer to References 20 and 21 and references 
cited therein for a discussion on this subject. 

7. NUMERICAL EXAMPLES 

7.1. A ~o-d~mensiona~ hydapp Stokes exampfe 

The hydapp Stokes problem will be solved with finite elements and with finite differences based on 
the C-grid. We will consider a two-dimensional domain R with its one-dimensional surface I:. Thus 
there is only one horizontal velocity component u and there is no Coriolis effect. For the viscosity 
coefficient or Ekman number we take p = 1. The boundary condition at the surface I: is taken to be 
Neumann, say aU/& = 10, expressing wind stress, and at the bottom rb and the lateral boundary rL to 
be Dirichlet with u=O, expressing no slip. 

To solve the problem with finite elements, the domain l2 is covered with triangles and its surface I: 
is divided into intervals (see Figure 2). The internal approximation of the space { v E H’(R) I v I r = 0) 
is based on the same type of basis functions as described in Section 4.1. The discretization consists of a 
triangulation of R into 6141 elements; the number of variable nodes is 3045. The surface I: is 
subdivided into 100 equidistant p-intervals. As mentioned before, with a Neumann condition at the 
surface the Lipschitz constant for the discrete divergence operator in (8) is the same as for the 
homogeneous Dirichlet problem, so that the convergence criterion (14) for the Uzawa algorithm is 
unaffected. 

The problem is solved with scheme (17) without the Coriolis term. At each m-iteration the first 
equation of (1 7) is solved with a direct method. The procedure is initialized with po = 0 and the stop 
criterion is taken to be 

Ildiv.ch($+:+’)llL,(,, 5 E = lo-’. 

This criterion is satisfied after 43 Uzawa m-iterations when the iteration parameter is taken as 
a = 0.93 x 2Cll’ig’. The number of m-iterations is given as a reference value. As mentioned, various 
methods exist to accelerate the Uzawa algorithm and one can easily reduce this number. Figure 4 

- 
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Figure 4. Streamlines resulting from a finite element calculation in a 2D domain. Notice the relatively strong vertical velocity at 
the vertical side of the domain, because no boundary condition for this velocity component is specified on this side 

shows the resulting streamlines of the flow. Notice the relatively strong vertical velocity near the lateral 
parts of the boundary. This is explained by the fact that for the hydapp Stokes problem no Dirichlet 
condition at a vertical side can be specified for this velocity component, as remarked near the end of 
Section 2. 

The same problem is solved with the finite difference method based on the C-grid as described in 
Section 4.2. The domain is covered with P-cells. The bottom cannot be exactly resolved with these 
cells, but it is staircase-like approximated. Further, when using the C-grid, Dirichlet and Neumann 
conditions for uh cannot be specified exactly on horizontal parts of the boundary, but they are 
prescribed with precision U(Q) in the usual way. The maximum number of P-cells in a row is 100 
and in a column 50. The number of internal u-cells in R is 3412, which is about the same as the 
number of variable nodes with which the finite element calculation was carried out. The number of 
equidistant p-intervals subdividing X is 100, as in the finite element calculation. The stop criterion is 

Figure 5. Streamlines resulting from a finite difference calculation in a 2D domain. P-cells are shown outside the domain. The 
bottom rb is staircase-like. The result is hardly different from that of the finite element calculation shown in Figure 4. 
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satisfied after 59 m-iterations with scheme (23) with a = 0.93 x 2pW2. Figure 5 shows the streamlines 
of the flow. The result hardly differs from that of the finite element case. 

The unstructured finite element method permits a better approximation of the boundary than the 
finite difference method and for boundary layer problems it is to be preferred. The first method, 
however, uses more computer operations than the second one. This is mainly due to the evaluation of 
the divergence and gradient operators in (17) at each interation. As mentioned, because of the 
anisotropic nature of the hydrostatic approximation problem, it is advantageous to use a discretization 
which is structured to the vertical direction in such a way that the integration in the vertical direction 
can be done easily. This is even more important in the non-linear case, where at each iteration the 
vertical velocity component has to be evaluated as well from a discrete form of (9). The Arakawa C- 
grid formalism resulting in discretizations (22H24) is very suitable for this purpose. Another 
possibility in the 3D case is the use of a finite element structure defined on the horizontal surface Z 
which is compatible for the classical 2D Stokes problem and a finite difference extension in the vertical 
direction. 

7.2. A simulation of the general circulation in Lake Neuchhtel 

Lake Neuchiltel is a quasi-rectangular body of water in western Switzerland. Its longest axis is 
directed SW-NE. The maximum length is 38.3 km, the average width 5-7 km and the maximum depth 
142 m. The bathymetry of the lake is like an ‘elongated bathtub’ with a bump centred in the NE region 
(Figure 6). This bump, called la Motte, is a rather steep mountain with its peak only 10 m below the 
water surface. The dominant wind is le Vent, a SW wind blowing along the long axis of the lake. More 
information about the morphology of the lake can be found in References 22 and 23. 

A number of studies have been carried out in the past that relate to the general circulation of Lake 
Neuchiltel. Barotropic processes were addressed by ZULU and D i e t r i ~ h ~ ~  using the Sandia Ocean 
Modeling System model. A numerical simulation of transport and sedimentation of suspended 
particles was performed by Thunus et al. ,” where the methods described in this paper were applied to 
simulate the currents. Here we will describe a short simulation to illustrate the performance of the 
derived iteration schemes. 

Figure 6. A 3D perspective of the lake topography. The location of the SW-NE vertical section in Figure 7(c) and 8(c) is shown. 
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To simulate the general circulation in the lake under autumnal conditions, the effect of thermal 
stratification must be included. Therefore the evolution hydapp Navier-Stokes equations must be 
coupled with an equation of state and a heat equation. By using the time integration described in the 
previous section, we get the following system of equations expressed in terms of the continuity 
equations in dimensional form: 

un+l - u~-l  a p . + I  + (;" . V)U" - xv" = - - 
2At ax 

-- - prig, with p" = po( 1 - yT"), 
aPn+l 

az 

&"+I a,,n+l w+l -+-+- = 0, 
ax ay az 

with, according to (27), a similar expression for the first time step. Here the symbols have the 
following meaning: 

spatial co-ordinates in a left-handed Cartesian system (z-axis points downwards) [L] 
time [TI 
temperature [O] 
velocity components (c = (u, v, w)) [L T-'1 
kinematic pressure [L2 T2] 
normalized density is reference density) 
effective gravitational acceleration [L T-2] 
turbulent viscosity and diffusion coefficients [L2 T-'1 
constant Coriolis parameter [T-'1 
coefficient of thermal expansion [@-'I. 

For the spatial discretization the Arakawa C-grid is used as described in Section 4.2. The volume of 
the lake is embedded in a rectangular box which is filled with P-cells. A horizontal plane of this box 
contains 70 x 18 P-cells (Figure 6), the area of each P-cell being 526 x 526 m2. In the vertical 
direction there are 20 layers of P-cells, the thickness of each layer being 7.1 m. The temperature is, 
like the pressure, discretized in terms of the P-cell basis functions. At each time step, first the 
pressure P is decomposed as in (5) into a non-hydrostatic surface pressure part and a hydrostatic part 
resulting from the non-uniform density field. Then the first four equations of (30) are solved with 
scheme (28)/(29), with the slight difference that the horizontal viscosity terms are treated explicitly 
in this scheme, i.e. a combination of the Uzawa and Arrow-Hurwicz algorithms is used. This has the 
advantage that during every UzawdArrow-Hurwicz iteration at each horizontal position a small 
boundary value problem of the order of the number of horizontal layers has to be solved that relates 
to the vertical viscosity component, instead of one large boundary value problem that relates to the 
whole viscosity term. After the velocity field has been updated, the heat equation is evaluated to 
obtain the new temperature field. 
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In order to identify some typical hydrodynamic features in the lake, the following simulation is 
performed. At the start of the run the lake is at rest and is thermally stratified: the temperature 
decreases linearly from 10°C at the surface down to 5°C at maximum depth. Then a spatially uniform 
SW wind blowing along the main axis is turned on with a constant wind speed. This wind lasts for 
12 h. After 12 h the wind is turned off and the run is contained for another 12 h. 

The wind-induced stress at the surface of the lake is related to the wind speed by a bulk aerodynamic 
formula, which results in a Neumann boundary condition for the horizontal components of the velocity 
at the surface: 

where pa is the air density, ( UIO, Vlo)T is the air velocity at an elevation of 10 m above the lake surface 
and c d  is a drag coefficient. At the bottom r, and the lateral boundary rL the boundary conditions for 
the horizontal velocity components are taken to be Dirichlet with u = v = 0. The parameters used in the 
calculation have the following values: 

po = 1000 kg m-3, = 10 m2 s-l, pa = 1.225 kg m-3, 
x =  1.05 1 0 - ~  d, Av=2.5 x m2 s-l c d  = 0.004, 
g =  9-8 m s-~, K H =  10 m2 s-', y=0.2 x 
At = 120 S, Kv=2.5 x m2 s-'. 

Thewindspeedis(Ul0, V10)=(7-5, O)ms- ' fo rOLt i12  hand(Ulo, Vlo)=Ofor 1 2 < t 5 2 4  h. 
The values for the viscosity and drag coefficients were taken from Reference 26. 

For this simulation the time step is not so much limited by the explicit treatment of the Coriolis term 
but by the internal gravity waves. The total number of time steps to arrive at an integration of 24 h is 
540. As the initial pressure for iteration procedure (29), the pressure which resulted from the previous 
time step is taken. This means in particular that if the flow field were stationary at a given time, only 
one m-iteration would be performed. The mean number of m-iterations over the 540 steps is 7.86 per 
time step. The whole calculation takes less than 4 min on a VAX A X P  system. 

Results are presented at two points in time, after 12 h in Plate 1 and after 24 h in Plate 2. For brevity, 
only two among the 20 depth levels and one of the 18 vertical slices in the length direction of the lake 
are displayed. The size of the arrows at a given 1eveVslice is scaled to the maximum velocity that 
occurs at that 1eveVslice and its magnitude is denoted under the corresponding plot. K and J denote the 
number of the depth level and of the cross-section respectively. K increases from surface to bottom 
from K = 1 to 20 and J increases from SE to NW from J= 1 to 70. 

After 12 h of wind forcing, near the surface and away from the boundary the velocity field is 
deflected to the right relative to the SW wind owing to the Coriolis acceleration (Plate l(a)). The angle 
of this deflection agrees with the theoretical value of 45", which is the limiting value in the Ekman 
layer when the surface is approached.' As the net horizontal flow in the upper layers is directed 
eastward, upwelling is induced in the west part and downwelling in the east part of the lake. This can 
clearly be seen from the horizontal temperature distribution in Plate l(a). Thus a vortex in the vertical 
west-east plane has been set up by the wind, which is depicted in the vertical cross-section in Plate 
l(c). After 12 h the wind is turned off and in Plate 2 the situation is shown 12 h later. During the 12 h 
without wind forcing, the currents in the middle of lake have horizontally propagated clockwise with 
inertial period 2nlx = 16.6 h owing to the Coriolis acceleration. Avortex appears in the NE part of the 
lake as a result of the existence of the topographic feature 'la Motte'. In the vertical direction the lake is 
subdivided into two oppositely rotating cells, epilimnetic and hypolimnetic, owing to the thermal 
stratification (Plate 2(c)). 
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8. CONCLUDING REMARKS 

The numerical treatment of the hydrostatic approximation Navier-Stokes equations based on a 
reformulation of the original continuity equations has a number of advantages. In contrast with other 
formulations, the boundary value problem that must be solved at each time step relates to the 
horizontal velocity components only, for which the boundary conditions are specified and do not have 
to be approximated. This leads to more accurate results. The reformulation permits a variational 
formulation, the discrete form of which can be solved with various well-known techniques that have 
been developed in the past to solve the full Navier-Stokes problem. Although the derivation of the 
numerical method is based on the implicit treatment of the pressure, Coriolis and viscosity terms, to 
find the solution, explicit iterative methods are used. In this fashion, fast algorithms can be defined, in 
particular when the spatial discretization is appropriately structured in the vertical direction. 
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APPENDK PROOF OF PROPOSITION 3 

First we will consider an iterative scheme which is slightly different from (19). Starting with q ( O )  = do), 
we define 

q ( l )  = p, 
(31) 

(p("+') = (I + 2jlA)-'(-2jlT(p(") + rp("-') + 2jlf) (n 2 1). 

Let d") = q(") - u (n 2 0). By introducing the vector d") = E(" - ') (n 2 l), from (18) and (31) we 
derive 

It is readily verified that the iteration matrix is non-singular. Let t = (tl, 
of this matrix and let 9 be a corresponding eigenvalue, i.e. 

E ?k be any eigenvector 

By taking the dot product in d of the first equation with tl we get 

-2B(rt1, tl) + 9-' lltlll; = ~(11tlII; + 2B(Ml* tl)). 

T is a skew-symmetric matrix with IlTIl I 1. Therefore, (Ttl, tl) is pure imaginary and 
l(Ttl, tl)l I lltlll:. This means, there exists ~ E R  with lql I 1 such that (Ttl, tl) = i q l l t ~ l l ; .  
A is a symmetric positive definite matrix with minimum eigenvalue &>O. So, there exists 
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a E R with a 5 &,.,in such that (MI, 5 , )  = a1151 11;. By combining these equations it follows that 9 
is a solution of 

(1 + 2/?a)92 + 2i/?rp9 - 1 = 0, 

from which we find that if 0< /?5  1, then 191 5 6 c 1. 

is well known that for every E >  0 (E << 1) there exists K 2 1 such that 
As the spectral radius of the iteration matrix p I 6 < 1, the iteration matrix is convergent. Then, it 

Now, one may verify that 8’) = ((pp(”+’) + (p‘”))/2 (n 2 0), and by using (p“) = (p(’) = dl) we get 

from which the proposition follows. 
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